An implementation of LDA using collapsed Gibbs sampling with multi-processing.
Methods
| __init__([corpus, context_type, K, V, ...]) | Initialize LdaCgsMulti. |
| load(filename) | A static method for loading a saved LdaCgsMulti model. |
| save(filename) | Saves the model in an .npz file. |
| train([n_iterations, verbose, n_proc, seeds]) | Takes an optional argument, n_iterations and updates the model n_iterations times. |
Initialize LdaCgsMulti.
| Parameters: |
|
|---|
A static method for loading a saved LdaCgsMulti model.
| Parameters: | filename (string) – Name of a saved model to be loaded. |
|---|---|
| Returns: | m : LdaCgsMulti object |
| See Also: | numpy.load |
Saves the model in an .npz file.
| Parameters: | filename (string) – Name of a saved model to be loaded. |
|---|---|
| See Also: | numpy.savez |
Takes an optional argument, n_iterations and updates the model n_iterations times.
| Parameters: |
|
|---|