An implementation of LDA using collapsed Gibbs sampling with multi-processing.
Methods
__init__([corpus, context_type, K, V, ...]) | Initialize LdaCgsMulti. |
load(filename) | A static method for loading a saved LdaCgsMulti model. |
save(filename) | Saves the model in an .npz file. |
train([n_iterations, verbose, n_proc, seeds]) | Takes an optional argument, n_iterations and updates the model n_iterations times. |
Initialize LdaCgsMulti.
Parameters: |
|
---|
A static method for loading a saved LdaCgsMulti model.
Parameters: | filename (string) – Name of a saved model to be loaded. |
---|---|
Returns: | m : LdaCgsMulti object |
See Also: | numpy.load |
Saves the model in an .npz file.
Parameters: | filename (string) – Name of a saved model to be loaded. |
---|---|
See Also: | numpy.savez |
Takes an optional argument, n_iterations and updates the model n_iterations times.
Parameters: |
|
---|